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Abstract

We present a spatiotemporal model of pulse amplification in the double-pass active mirror (AM) geometry. Three types

of overlap condition are studied, and the spatiotemporal scaling under the four-pulse overlapping (4PO) condition is

fully characterized for the first time, by mapping the temporal and spatial segments of beam to the instantaneous gain

windows. Furthermore, the influence of spatiotemporal overlaps on the amplified energy, pulse distortion and intensity

profile is unraveled for both AM and zigzag configurations. The model, verified by excellent agreement between the

predicted and measured results, can be a powerful tool for designing and optimizing high energy multi-pass solid-state

laser amplifiers with AM, zigzag and other geometries.
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1. Introduction

Diode-pumped nanosecond lasers with high energy, good

beam quality and high conversion efficiency have a wide

range of applications such as inertial confinement fusion,

material processing and hard X-ray generation. The active

mirror (AM) geometry[1–6], in which the gain medium also

acts as a mirror to allow round-trip energy extraction in a sin-

gle pass, has drawn much attention for its potential for high-

energy lasers with superior performance. The spatiotemporal

overlap effects in the AM geometry, which may, however,

exert great influence on the pulsed output characteristics

such as output energy, pulse shape and intensity distribution,

remain as yet unexplored.

For a double-pass AM configuration, laser pulses that

propagate forward and backward along the same route within

the gain medium may lead to a collinear overlap, that

is, both the leading and trailing edges of the pulse share

an inverted population at the location they arrive at, at

the same time. In addition, specifically for single-pass and

multi-pass AM geometry, the non-collinear overlap occurs

Correspondence to: X. Fu, Key Laboratory of Photonic Control Technol-
ogy (Tsinghua University), Ministry of Education, Beijing 100084, China.
Email: fuxing@mail.tsinghua.edu.cn

due to the V-shaped beam path within the AM, so that

a particular location with local gain can be crossed and

the gain extracted simultaneously by two rays that are both

forward- or backward-propagating but travel on different

routes. Moreover, collinear overlap and non-collinear overlap

can happen at the same location and at the same moment

in the double-pass AM configuration: that is, four pulse

segments are simultaneously extracting gain at the same

location, which further increases the difficulty in predicting

the behaviors of double-pass AM amplifiers.

In previous studies, the pulse overlap in the double-pass

amplification process was firstly investigated by Hirano et al.

in 1999[7], presenting a numerical solution by using the

iterative procedure method. In 2005, a simplified analytic

expression was given by Pearce et al.[8], where only the

complete temporal overlap case was considered, however.

In 2017, Li et al.[9] presented an intuitive numerical method

by meshing the pulse and gain medium into spatial grids,

in which the pulse distortion caused by double-pass scaling

is discussed. Furthermore, Jeong et al.[10] developed a sim-

ulation method directly using the modified Frantz–Nodvik

equation, demonstrating the lowest computation cost so far

reported, while the pulse shape distortion was studied and

compared with experimental results. The above-mentioned
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Figure 1. Optical paths in a double-pass laser amplifier with a single AM. (a) Three-dimensional view; (b) two-dimensional view on the xz plane, along

with the initial distribution of stored energy density.

methods have several limitations, however, preventing their

applicability to high energy AM configuration. First and

foremost, all these works focused on the collinear overlap

of the rod geometry with a straight-through beam path.

Second, of main interest were the influences of overlap on the

final amplified outputs, without characterizing the individual

effects of each spatial and temporal segment that participated

in the overlap process. Third, a unified gain coefficient is

used for the entire gain medium, ignoring the nonuniformity

of the pump distribution.

In this paper, a comprehensive spatiotemporal model is

established, unraveling the pulse amplification process in

double-pass AM geometry. Three types of overlap condi-

tion are studied, while temporal and spatial segments of

extracting beam are characterized by p-τ diagrams in the

instantaneous gain windows. To the best of our knowledge,

this is the first spatiotemporal characterization of the overlap

condition with four pulse segments in solid-state lasers.

The model is well verified by the experimental results from

a 10 J distributed active mirror amplifier chain (DAMAC)

system[5] in terms of the influences of spatiotemporal over-

lap effects on the output parameters. The analysis method

is also extended to zigzag geometry. We believe that the

model is beneficial to the design and optimization of multi-

pass pulsed laser amplifiers with AM, zigzag and other

geometries.

2. Modeling

2.1. Geometry

Figure 1(a) shows a schematic diagram of optical paths

in a double-pass laser amplifier with a single AM, as an

example describing the spatiotemporal overlap effects. It is

shown that the seed beam is injected into the gain medium

through its front surface, experiences one reflection at the

pump surface, and exits the gain medium through the front

surface. The beam is then reflected by a mirror, reenters the

AM and retraces its route for the second passage. The initial

distribution of stored energy density in the gain medium

is simulated in Figure 1(b), using the pump parameters as

detailed in Section 2.3 below. The longitudinal pumping

distribution decays exponentially along the z direction, while

a uniform pump distribution in the xy plane is assumed,

and the following discussion neglects the variation in y

distribution.

As indicated in Figure 1, the gain of a certain loca-

tion M within the pumped AM (as marked by a star)

can be extracted by at most four rays, including forward-

and backward-propagating parts of rays #1 and #2. Gener-

ally, there are three types of overlap conditions according

to the sequence of extracting pulses experienced by M.

The first type is collinear two-pulse overlapping (C2PO),

where only collinear overlap occurs, while non-collinear

overlap is absent so that only one ray crosses M forward

and backward, as indicated by I+ and I−, respectively, in

Figure 2(a). C2PO is the exact type of overlap that previous

work[7–10] focused on when studying laser configurations

with a straight-through beam path. In the double-pass AM

configuration, C2PO can only occur in very limited regions,

which are defined in Section 3.2 below.

The second and third types are the main overlap conditions

in double-pass AM geometry. The second type is non-

collinear two-pulse overlapping (N2PO), where only non-

collinear overlap occurs while collinear overlap is absent,

that is, as Figure 2(b) illustrates, pulse segments of rays

#1 and #2 propagating in the forward direction (I1+ and

I2+) arrive at M at the same time, while their backward-

propagating counterparts (I1− and I2−) also meet at M but

for a different duration due to a sufficiently long free-space
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Figure 2. Sequence diagrams of three types of overlap conditions. (a) C2PO; (b) N2PO; (c) 4PO.

propagating distance between the two passages. The third

type is four-pulse overlapping (4PO), where pulse segments

of I1+, I2+, I1− and I2− simultaneously arrive at M for a

certain duration so that both collinear and non-collinear

overlaps occur, as shown in Figure 2(c). Clearly, the 4PO and

C2PO conditions can transform to each other by adjusting

the free-space propagating distance between two passages.

The overlap degree of collinear overlap is defined as

ηop =







Tc −2TD

Tc +2TG +2TD

(Tc ≥ 2TD),

0 (Tc < 2TD),

(1)

where TG is the time of flight (TOF) of beam through the

single passage within the gain medium, TD is the TOF of the

single-pass free-space distance D, and Tc is the input pulse

width for the Gaussian profile we used in this paper. For an

intensity-normalized Gaussian-shape pulse, the intensity has

the form

fg(x) =
1

√
2πσ

exp

[

−
(x−µ)2

2σ 2
,

]

, (2)

where µ is the mathematical expectation and σ is the stan-

dard deviation. Note that to precisely model the pulse scaling

process, Tc is calculated by 5σ width, that is, all the pulse

segments within µ ± 5σ are considered in the calculation,

containing 99.99994% of the whole energy in the Gaussian

shape. According to Equation (1), ηop is defined as the ratio

of the time duration of collinear overlap to the total TOF of

the laser beam during the amplification. It is apparent that

ηop can be tuned by varying D. For the case of Tc < 2TD, the

trailing edge of the seed pulse completes the first passage

(forward) before the leading edge begins the second passage

(backward), which means pulse segments propagating in the

collinear route never overlap with each other. Otherwise the

leading and trailing edges would encounter within the gain

medium and extract the stored energy together.

2.2. Simulation method

A numerical loop iteration method to characterize the ampli-

fied pulse with spatiotemporal overlaps is introduced as

follows. With the temporal grid size of dt, the propagation

distance in the gain medium during dt is calculated as

dl = c dt/n, where c is the speed of light in vacuum and n

is the refractive index of the gain medium. The spatial grid

sizes along the x and z directions are set as dx = dl sinβ and

dz = dl cosβ, respectively, where β is the beam refraction

angle in the gain medium. The stored energy density at the

xz plane of the gain medium is expressed as Est(x, z, T),

where T is the absolute time since the amplification begins,

identified by TOF as beam propagates. In the simulation,

the pulse has a Gaussian shape temporal profile and flat-top

spatial profile. The beam is spatially discretized into a great

number of rays (spatial slices) along the x direction, while

each ray has the beam width dx, and is identified by the ray

index nx. The pulse is temporally discretized into a series

of successive pulse segments (temporal slices), identified by

the pulse segment index nt.

Note that the calculation is operated not by tracing

each ray, but by concentrating on the pulse segments

of rays that are experienced by each location M(x, z) at

each moment. For each location M(x, z) within the gain

medium, there are at most four rays crossing M(x, z), with

respective intensities of I1+, I1−, I2+ and I2−, as defined

in Figure 1(b). At a certain time interval T∼T + dt, the

corresponding ray indexes of these four rays crossing M(x, z)

are nxj(x, z, T), j = 1±, 2±, and the corresponding pulse

segment indexes nt of the overlapping pulse segments at

M(x, z) are ntj(x, z, T), j = 1±, 2±. Thus, the intensities of

these four rays are rewritten as I(nxj(x, z, T), ntj(x, z, T), T),

j = 1±, 2±. The geometrical relationships among ntj and

nxj of four overlapping rays are detailed in Section 3.2

below.

Thus, the overall input fluence at M(x, z) at time interval

T∼T + dt can be expressed as
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Iin(x,z,T)dt =
∑

j=1±,2±

I(nxj(x,z,T),ntj(x,z,T),T)dt. (3)

According to the Frantz–Nodvik equation[10], the scaling

factor of the energy amplification at M(x, z) at time interval

T∼T + dt, with the input fluence of Iin(x, z, T)dt, is given by

Ge(x,z,T)

=
Esat ln{1+ exp[Est(x,z,T)dl/Esat]{exp[Iin(x,z,T)dt]/Esat −1}}

Iin(x,z,T)dt
, (4)

where Esat is the saturation fluence of the gain medium.

Hence, the spatiotemporal intensity of the laser beam and

the instantaneous stored energy density in the gain medium

at time interval T + dt∼T + 2dt are calculated as

I
(

nxj (x,z,T),ntj (x,z,T),T +dt
)

= Ge (x,z,t) I
(

nxj (x,z,T),ntj (x,z,T),T
)

, j = 1±,2±,

(5)

Est (x,z,T +dt)

= Est (x,z,T)− [Ge (x,z,T)−1] · Iin (x,z,T)dt/dl. (6)

Note that as the time increases by dt, the intensities

of the four pulse segments extracting the gain at M(x, z)

change to I(nxj(x, z, T), ntj(x, z, T) + 1, T + dt), j = 1±, 2±.

As T increases in succession, by using Equations (3)–(6),

I(nxj, ntj, T) and Ge(x, z, T) are updated over the gain medium

region at the xz plane for every elapsed time interval of dt,

until the entire pulse exits the gain medium after double

passage.

The simulation is run on a personal computer with 2.1 GHz

CPU (Intel i5-10210U) and 16 GB RAM. It takes 10 min

to perform a full spatiotemporal calculation for the double-

pass chain with four AM modules with a spatial grid size of

dz = 0.05 mm.

2.3. Experimental setup

The validity of the spatiotemporal model of double-pass

AM geometry is examined based on a 10 J DAMAC system

with an experimental method similar to that reported by

Liu et al.[5] The seed beam to be scaled has a maximum

output energy of 3 J at a repetition rate of 10 Hz and a pulse

width (full width at half maximum, FWHM) of 10 ns. The

double-pass amplifier contains four AM modules as shown in

Figure 3, and a 0.6 at.% doped Nd:YAG slab as the gain

medium in the AM module has a transverse aperture of

60 mm× 40 mm and a thickness of 8 mm. The laser diode

array for each slab provides a maximum pump energy of

Seed

QWP HR

PBS

AM module

BS
CCD

EM

BS

PD Oscilloscope

D

Figure 3. Experimental layout of the double-pass AM amplifier. PBS,

polarization beam splitter; BS, beam splitter; QWP, quarter-wave plate; HR,

high-reflection mirror; EM, energy meter; PD, photodetector.

13.3 J for a duration of 300 µs, with an illuminated size

of 52 mm× 36 mm at the pump surface of the slab. The

seed beam size of 10 mm× 10 mm is used to realize a

wide range of available input fluence (up to 3.84 times the

saturated fluence) for investigating the tendencies for pulse

distortion and intensity distribution variation of the output

beam. A full-aperture seed beam size of 32 mm× 32 mm

is used for studying the output energy of the AM chain,

maximizing the spatial matching with the pump distribution

and thus the extraction efficiency of stored energy. For the

amplified beam after double passage, the output energy

is measured by an energy meter (Standa), the intensity

distribution is measured by a charge-coupled device (CCD)

(Ophir Photonics, SP300), and the pulse shape is measured

by a photodetector (Thorlabs, DET08) and a high-speed

oscilloscope (Tektronix, MDO 3104).

3. Results and discussion

3.1. Variation of stored energy

For every TOF, the instantaneous stored energy intensity Est

at M and the instantaneous overall beam intensity
∑

I at

M are calculated and demonstrated in Figure 4. Note that

Figure 4(a) shows an extreme case where the seed beam

has zero temporal width and no overlap occurs, so that

Est at M reduces stepwise, as the four segments (I1+, I2+,

I2− and I1−) pass M and extract the gain in succession.

Figure 4(b) shows the C2PO condition with a practical

pulse width for the extracting beam where Est reduces
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Figure 4. Instantaneous stored energy density and extracting beam intensity at M versus TOF. (a) Successive extraction with no overlap, considering a seed

beam of zero temporal width; (b) C2PO; (c) N2PO; (d) 4PO.

Figure 5. Relationship between 1Est and instantaneous overall beam

intensity
∑

I at location M for the C2PO condition.

continuously and
∑

I has a two-peak profile versus TOF, as

combined by the instantaneous intensities of two segments

at M (I1+ and I1−), each of which has a Gaussian shape

versus TOF. The gradient of change in the stored energy

density 1Est, as indicated in Figure 5, can be connected to
∑

I at M by

1Est =
dEst

dt

= −
{

Esat ln

{

1+ exp

(

Est

Est
dl

)[

exp

(

∑ I

Esat
dt

)]

−1

}/

(

∑

Idt
)

−1

}

·
∑

I/dl. (7)

Figures 4(c) and 4(d) describe Est and
∑

I versus TOF

for N2PO and 4PO conditions, respectively, where
∑

I sums

I1+, I2+, I1− and I2−. Note that the central flat portion of the



6 T. Liu et al.

Figure 6. Instantaneous stored energy density at a given TOF in a double-

pass amplifier with single AM.

Est curve in Figure 4(c) denotes the duration of the beam

travelling in free space between two passages.

3.2. Spatiotemporal scaling of single AM

Figure 6 illustrates the instantaneous stored energy density

at a given TOF for a double-pass amplifier with a single AM

operating under the 4PO condition. Forward-propagating

routes of rays #1 and #2 have a non-collinear overlap at

M, and thus have 4PO at M together with their backward-

propagating counterparts. For a double-pass extracting beam

with a pulse width of several nanoseconds, there are only two

temporal segments of ∼100 ps width that can be amplified

at a specific TOF, named hereinafter as the gain window

of forward-propagating pulse (GWF) and the gain win-

dow of backward-propagating pulse (GWB), as shown in

Figure 7. The width of each gain window is calculated

as τs = 2L0n/c + d/c = 137 ps, where 2L0 = 17.4 mm is the

single-pass optical length within the AM, and d/c is the time

delay difference between the beam outer and inner edges,

as illustrated in Figure 6. The time interval between GWF

and GWB is equal to 2D/c. Note that the p-τ diagrams

for GWF and GWB are symmetrical to each other, because

the forward-propagating route of ray #1 and backward-

propagating route of ray #2 are symmetrical relative to the

z-axis crossing M, the symmetry of which also applies to ray

#2 going forward and ray #1 going backward, as shown in

Figure 6.

Figure 7(b) describes both gain windows at TOF of

25.5 ns for a group of four pulse segments (PS #1, #4

from ray #1, and PS #2, #3 from ray #2) that participate

in the same 4PO process, i.e., simultaneously extracting

the gain at M. The instantaneous pulse shapes of rays

#1 and #2 are demonstrated in Figure 7(b), with GWF

and GWB opening at tGWF = TOF − τs = 25.38 ns and

tGWB = tGWF − τs − 2D/c = 13.18 ns, respectively, in the

framework of a 5σ -width pulse shape of the extracting beam

from 0 to 42.47 ns.

As shown in Figures 7(a) and 7(c), the p-τ diagram for a

gain window illustrates the instantaneous stored energy den-

sity experienced by a certain pulse segment of a certain ray

at a given TOF, while the ray is identified by the coordinate

p according to its distance to the outer edge beam within the

AM (p = nx dx cosβ), and τ represents the segment timing

relative to the opening time of the gain window. For example,

the color of PS #1 in the p-τ diagram for GWF denotes

the stored energy density experienced by a pulse segment,

with the pulse timing of tGWF + τ1 = 25.38 ns + 105 ps, for

ray #1 passing through the point at p1 = 4.1 mm, while PS

#3 for GWB corresponds to the pulse segment of ray #2

passing through the point at p2 = 9.0 mm, with a pulse timing

of tGWB + τ2 = 13.18 ns + 31 ps. The hexagonal region in the

p-τ diagram as marked by an orange dashed line is defined

as the 4PO region where the 4PO process can occur, while

the other region that the beam passes through is where C2PO

happens.

For the geometric relationship of the p-τ diagram, we have

tanγ =
p2 −p1

cn (τ2 − τ1)
=

2Lsinβ cosβ

cn

[

2L/cn − (d2 −d1)/c
]

=
2Lsinβ cosβ

2L [1− (sinβ sinα)]/n
= tanβ, (8)

tanγ ′ =
d/n

d cosβ/sinα
= tanβ, (9)

where the law of refraction yields sinα = nsinβ and cn = c/n

is the speed of light within the AM.

From Equations (6) and (7), we have γ ′ = γ , thus the

connecting line between PS #1 and #2 is perpendicular to

the pump surface in the p-τ diagram for GWF. Note that PS

#1 and #2 coincide by folding the p-τ diagram in Figure 7(c)

along the pump surface, and simultaneously one can obtain

the exact instantaneous distribution of stored energy density

in the beam passage regions shown in Figure 6. The (p, τ )

coordinates of the pulse participants of 4PO at an arbitrary

location M(x, z) within the 4PO region for a given TOF are

calculated as















p1 = xcosβ − (H0 + z)sinβ,

p2 = xcosβ − (H0 − z)sinβ,

τ1 = [xsinβ + (H0 + z)cosβ]/cn,

τ2 = [xsinβ + (H0 − z)cosβ]/cn,

(10)

where H0 is the AM thickness.
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Figure 7. (a) p-τ diagram for GWB; (b) gain window for four pulse segments (PS #1–#4 from rays #1, #2) that participate in the same 4PO process at TOF

of 25.5 ns; (c) p-τ diagram of GWF. The colorbar setting is the same as that for Figure 6.

Figure 8. Gain windows at different TOFs throughout the amplification. The colorbar setting is the same as that for Figure 6.



8 T. Liu et al.

Figure 9. Pulse shape variation through the AM chain with D = 0.3 m. (a) Input energy of 0.1 J; (b) input energy of 1 J.

Figure 8 shows the variation of p-τ diagrams versus TOF

throughout the amplification process. For a TOF of 0.14 ns,

4PO does not happen and GWB does not exist, because the

leading edge of the pulse has not yet reentered the AM for

the second passage. For the TOFs of 12.4 ns, 25.5 ns and

36.8 ns, 4PO occurs and Est dramatically decreases as time

elapses. After the completion of the first passage of the

entire pulse, only the trailing pulse segments going backward

are extracting the gain, as shown in the GWB at TOF

of 45.8 ns.

3.3. Spatiotemporal scaling of an AM chain

Using the setup introduced in Section 2.3, pulse-scaling

experiments through four AM modules were conducted to

verify the predicted results. In the experiment, the minimum

available value of free-space distance D is 0.3 m due to

practical limits. The simulated pulse shapes of forward- and

backward-propagating pulses at AM #1–#4 are summarized

in Figures 9(a) and 9(b) for the input energies of 0.1 J and 1 J,

respectively. One can understand that the leading segments

experience higher gain and enjoy more magnification than

the trailing segments, and thus the pulse peak moves forward

for both input energies. For the case of relatively low input

fluence, the original peak is completely covered, as shown

in Figure 9(a). At the input energy of 1 J, however, the

scaling factor difference between the leading segments and

the original peak is not large enough, and thus the peak of the

leading segments cannot cover the amplified original peak,

generating the two-peak profile as shown in Figure 9(b).

With the overall gain of the amplifier further enhanced,

more peaks may appear, with examples shown in Section 3.4

Figure 10. Pulse shape for different D with an input energy of 1 J.

below. Figure 10 demonstrates that the two-peak distortion

becomes weaker as D enlarges, and even vanishes with D

over 1 m.

Experimental results on the temporal profile of amplified

output under 4PO condition are shown in Figures 11(a)–

11(d) with seed energies of 0.1 J, 1 J, 1.8 J and 3 J,

respectively, demonstrating four representative pulse profiles

including a stretched single-peak shape, a two-peak shape

with the former peak higher, a two-peak shape with equal

intensity and a two-peak shape with the latter peak higher.

Note that for a high input fluence (3.84 times the saturation

fluence) in Figure 11(d), the leading segments extract almost
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Figure 11. Measured pulse profiles under the 4PO condition, along with predicted results, versus different input energies. (a) 0.1 J; (b) 1 J; (c) 1.8 J; (d) 3 J.

all the stored energy while the trailing segments barely

get amplified. Furthermore, predicted profiles using three

models for C2PO, N2PO and 4PO are added in Figure

11 to compare with experimental results operating under

4PO condition. It is shown that the 4PO model agrees well

with experimental results in all four scenarios, while the

N2PO model fails to predict two-peak profiles and the C2PO

model always overestimates the scaling factors of the leading

segments. Experimental results under the N2PO condition

(with a sufficiently long D) are obtained as well, showing

good agreement with the predicted results using the N2PO

model, as shown in Figure 12.

The transverse intensity profiles of an amplified beam

with seed energies of 0.1 J, 1 J, 1.8 J and 3 J are shown in

Figures 13(a)–13(d), respectively, in which the experimental

results agree well with the simulation results under all

conditions of C2PO, N2PO and 4PO. Note that the experi-

mental conditions for C2PO can be approximately realized

by reducing the seed beam diameter to 0.5 mm with a

serrated aperture. Figure 13 also shows that the beam edges

achieve stronger power scaling than the beam center in

both N2PO and 4PO conditions, while the flat-top intensity

profile remains through the amplification for C2PO condi-

tion. To evaluate the nonuniformity of intensity distribution

versus input energy and free-space traveling distance D,

the relative standard deviation (RSD) was calculated and

illustrated in Figure 14, showing that RSD reaches up to

9.7% at an input energy of 200 mJ and improves to 4.8%

at an input energy of 2.5 J, while RSD is insensitive to

variation of D.
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Figure 12. Predicted and measured results for an amplified pulse profile under the N2PO condition versus input energy. (a) 0.1 J; (b) 1 J; (c) 1.8 J; (d) 3 J.

To investigate the energy loss caused by 4PO, we define

the energy-loss ratio as

ξ
(

ηop

)

=
E0 −Eηop

E0

, (11)

where E0 is the output energy in the N2PO condition (with a

sufficiently long D to ensure ηop = 0), and Eηop is the output

energy in the 4PO condition for a particular ηop. Figure

15(a) indicates a linear relationship between D and ηop,

and describes the variation of the energy-loss ratio versus

different input energy and D, showing that the energy-loss

ratio remains at an extremely low level for cases of ηop below

0.6 (with D over 2.2 m), but rises rapidly with larger ηop

(smaller D). For an input energy of 200 mJ, the energy-loss

ratio due to spatiotemporal overlap is as high as 15.7% for D

of 0.3 m and 1.5% for D of 1.5 m, as shown in Figure 15(b),

while the energy-loss ratio can be kept below 5% for D of

0.3 m and an input energy of 2.5 J.

Figures 16(a)–16(d) show the influence of the number

of AMs in a chain on the laser output characteristics

including the pulse shape, intensity distribution and its

nonuniformity, as well as the energy-loss ratio. For the two-

peak pulse profile, the first peak becomes much higher than

the amplified original peak of the Gaussian shape pulse,

and moves forward as the number of AM increases, as

shown in Figure 16(a). Figures 16(b) and 16(c) indicate a

similar profile of intensity distribution and larger RSD with

more AMs in the chain. According to Figure 16(d), as the

number of AMs increases from four to eight, the maximum

energy-loss ratio increases from 20.1% to 29.7%, while the

corresponding critical input energy reduces from 100 mJ to

10 mJ.

Hence, as Figures 15 and 16 suggest, the energy loss due

to spatiotemporal overlap needs to be seriously considered

for the selection of the input energy and free-space dis-

tance D for designing a double-pass AM amplifier. In some

circumstances, a trade-off between the output energy and

the system compactness is inevitable. Also note that, for

a sufficiently high input fluence, since most of the stored

energy is extracted in the first passage, the double-pass

geometry should be avoided to prevent severe distortion of

the pulse shape, nonuniform intensity distribution, and a

considerable energy loss due to spatiotemporal overlap.
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Figure 13. Transverse intensity profiles of amplified beam versus the input energy. (a) 0.1 J; (b) 1 J; (c) 1.8 J; (d) 3 J.

Figure 14. RSD of transverse intensity distribution versus the input energy

and D.

3.4. Extension to zigzag geometry

The spatiotemporal model established above for the double-

pass AM geometry can be extended to double-pass zigzag

geometry, since they share a series of V-shaped paths inside

the gain medium. Figures 17(a) and 17(b) demonstrate the

evolution process from four pieces of AM closely arranged,

with coinciding front surfaces of the upper and lower AM

modules, to a zigzag configuration as the distance H between

two pump surfaces shortens from 2H0 to H0, while keeping

the pump intensity unchanged. The input beam size here is

reset as 3 mm× 3 mm to accommodate both geometries.

Figure 18(a) shows that a higher output energy can be

obtained as H decreases from 2H0 to H0, since the energy

storage is more concentrated, leading to the scaling factor

enhancement of 36.1%, 22.2%, 12.6% and 3.0% for the input

energies of 1 mJ, 10 mJ, 100 mJ and 1 J, respectively. As

Figure 17(b) indicates, according to the traditional modeling
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Figure 15. Energy-loss ratio of 4PO. (a) Versus ηop; (b) versus the input energy.

Figure 16. Influence of the number of AMs in a chain on the laser output characteristics. (a) Pulse shape; (b) intensity distribution; (c) RSD of intensity

distribution; (d) energy-loss ratio.
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Figure 17. Evolution from an AM chain to zigzag geometry. (a) Four AM modules closely arranged; (b) zigzag geometry.

Figure 18. Scaling factor (a) versus the ratio of H to H0 and (b) versus the input fluence.

of zigzag geometry[11,12] based on a modified Frantz–Nodvik

equation, the fill factor f is calculated as

f =
LS

LB

=
s/cosβ

2H tanβ
=

s

2H sinβ
. (12)

With the same input fluence, enlargement of f leads to an

increased overlap region and thus a lower scaling factor, as

Figure 18(b) depicts.

The influence of spatiotemporal overlap on the amplified

zigzag output for H = H0, is investigated in Figure 19, by

adjusting D and the bounce number (BN) of the zigzag beam

path inside the gain medium during a single passage. Figures

19(a) and 19(b) show that the energy-loss ratio due to spa-

tiotemporal overlap in the zigzag geometry is quite sensitive

to D and BN at low input, having a distinct reduction by

94.3% with 2 m enlargement of free-space traveling distance,

and a reduction by 84.1% with five less bounces for a seeding

of 1 mJ. For an input energy above 100 mJ, however, the

energy-loss ratio remains below 0.6%, being robust against

D and BN. For the pulse profile, the variation tendencies for

pulse-shape distortion with boosting gain are similar to cases

of an AM chain. Figure 19(c), where BN = 4, illustrates that

the four representative pulse profiles of AM geometry shown

in Figure 11 can also be obtained in zigzag geometry at the

input energies of 1 mJ, 100 mJ, 200 mJ and 1 J, respectively.

Specifically, with an extremely high overall gain, as shown

in Figures 19(d) and 19(e) for BN = 8, there can be more

than two peaks in the output pulse profile. Figure 19(f)

shows the RSD of the transverse intensity distribution versus

BN, which is maintained at the level of 0–2.5% and is

much smaller than that of Figure 16(c), mainly due to the

largely reduced beam size and thus rapidly increased input

fluence.

4. Conclusions

In this paper, spatiotemporal characterization of laser pulse

amplification in a double-pass active mirror amplifier has

been investigated. For three types of overlap conditions

(collinear two-pulse overlapping, non-collinear two-pulse

overlapping and four-pulse overlapping), the instantaneous

stored energy intensity and beam intensity at a certain

moment and a certain location are described. In partic-
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Figure 19. Influence of spatiotemporal overlap on the amplified zigzag output. (a) Energy-loss ratio versus D (BN = 4); (b) energy-loss ratio versus BN

(D = 0 m); (c) pulse shape versus input energy (BN = 4); (d) pulse shape versus BN (input energy of 0.1 J); (e) pulse shape versus input energy (BN = 8);

(f) RSD of intensity profile versus BN.
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ular, spatiotemporal scaling under four-pulse overlapping

condition at every single moment (identified by time of

flight) is fully characterized for the first time, by map-

ping the temporal and spatial segments of beam to p-τ

diagrams in the instantaneous gain windows for forward-

and backward-propagating pulses at an arbitrary location

within the active mirror. Furthermore, the significant impact

of spatiotemporal overlaps on the amplified energy, pulse

distortion and intensity profile is discussed in detail, for

both active mirror and zigzag configurations. The valid-

ity of modeling based on the loop iteration method is

well verified by the excellent agreement between the pre-

dicted results and the measured results obtained using a

10 J experimental setup. The comprehensive spatiotemporal

model presented is crucial for our work of further scal-

ing the energy of DAMAC, and also acts as a powerful

tool for the general design and optimization of multi-pass

pulsed laser amplifiers with active mirror, zigzag and other

geometries.
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